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Abstract

A theoretical solution is presented of a problem of transient heat conduction in a one-dimensional three-layer

composite slab. A full series solution for impulsive heating is found by employing a �natural’ orthogonal relationship
between the eigenfunctions. The eigenfunction expansion solution is compared with a finite difference numerical

solution. Based on a previous analysis of the two-layer problem, and the present three-layer problem, a conjectured

partial solution for an n-layer composite slab is given.
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1. Introduction

The problem of multi-layer heat conduction has been

extensively studied [1–3]. The book by €OOzisik [1] con-

tains a detailed review (in Chapter 8) of one-dimensional

composite media, focusing on orthogonal expansions,

Green’s functions and Laplace transform techniques.

Recently, de Monte [4] has developed a solution for

the two-layer problem using a �natural’ eigenfunction

expansion method. He also provides a detailed and well-

written introduction in which various solution methods

are described and compared. The global (or �natural’)
eigenfunction expansion method has the advantage of

making ‘‘the solution consistent with the physical reality

of the problem’’ because the ‘‘transient response of (the)

solid to changes in the outer boundary conditions is

strictly linked to the thermal diffusivity’’ [4]. The method

is both ‘‘efficient’’ [5] and ‘‘simple’’ [5] in the sense that

the problem formulation is intuitive and its solution by

eigenfunction expansions is straightforward.
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As part of a funded NASA microgravity combustion

research project dealing with flamelet spread over thin

samples of solid fuels (in the presence of a nearby cold

‘‘backing’’ or ‘‘substrate’’), we generalized this solution

method to the three-layer problem. Our three-layer

model describes the simplified case in which all heat

transfer occurs only by conduction (no convection, no

radiation, no heat generation [6], no combustion [7]).

Based on the symmetries observed in the two [4] and

three-layer problems, we formulate a conjectured n-layer
solution for the one-dimension multi-layer slab. Com-

parisons between the straightforward numerical solution

and the eigenfunction expansion solution are made.

Although the straightforward finite-difference numer-

ical solution is easily implemented there may be cases,

particularly in problems involving contact resistance and

other limiting behaviors (for example, one slab layer is

extremely thin or consists of amaterial very different from

the others), where it is advantageous to have an analytical

solution.
2. The dimensionless model problem

Consider a composite slab consisting of three parallel

layers as shown in Fig. 1. Let k1, k2, and k3 be thermal
ed.
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Fig. 1. The three-layer composite slab showing the imposed temperatures on the two sides at the orientation of the coordinate system.

The contact between the interfaces is assumed to be thermally perfect, meaning continuity of T and oT=ox at x ¼ d1 and x ¼ d1 þ d2.
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conductivities, a1, a2, and a3 be the thermal diffusivities

and d1, d2, and d3 be the thickness of the first, second and

third layers, respectively. Initially (t ¼ 0) the three-

region plate has a specific, uniform temperature T0. At

time t ¼ 0 the composite slab is suddenly heated such

that the temperatures after t ¼ 0 are fixed as T0 and T1 at
the bottom and top surfaces, respectively. Here T1 rep-

resents the ‘‘flame’’ temperature while T0 represents the

cold ‘‘substrate’’ temperature. The middle region of

thickness d2 is the heated sample. At the two interfaces

(x ¼ d1; x ¼ d1 þ d2), we assume that perfect thermal

contact conditions are satisfied. We assume also that the

thermal conductivity and the thermal diffusivity are

temperature independent and uniform within each layer.

In a rectangular coordinate system the mathematical

model in dimensionless form is written as follows:

oh
os

¼ di
o2h

on2i
ðin the ith regionÞ ð1aÞ

hjn1¼0 ¼ 1; hjn3¼1 ¼ 0 ðboundary conditionsÞ ð1bÞ

hjn1!1� ¼ hjn2!0þ ðcontinuity of temperatureÞ ð1cÞ

� j1

oh
on1

����
n1!1�

¼ � j2

oh
on2

����
n2!0þ

ðcontinuity of fluxÞ

ð1dÞ

hjn2!1� ¼ hjn3!0þ ðcontinuity of temperatureÞ ð1eÞ

� j2

oh
on2

����
n2!1�

¼ � j3

oh
on3

����
n3!0þ

ðcontinuity of fluxÞ

ð1fÞ

hjs¼0 ¼ 0 ðinitial conditionÞ: ð1gÞ

Here, h¼ ðT � T0Þ=ðT1 � T0Þ, n1 ¼ x=d1, n2 ¼ ðx� d1Þ=d2,
n3 ¼ ðx� ðd1 þ d2ÞÞ=d3, s¼ t=t0, di ¼ ait0=ðd2

i Þ, ji ¼ ki=di
for i¼ 1;2;3. Here t0 is a reference time. We also note

that j1, j2, j3 are not dimensionless but their ratios
(j1=j2, etc.) are dimensionless. As will be seen later

(Section 5), writing the equations in this form makes

certain mathematical symmetries immediately obvious.
3. Series solution

We decompose the dimensionless temperature h into

two parts as

hðni; sÞ ¼ wðniÞ � /ðni; sÞ ð2Þ

Here, wðniÞ is the steady solution [8], given by

w ¼ 1� ðDhÞ1n1 in n1 2 ð0; 1Þ
w ¼ 1� ðDhÞ1 � ðDhÞ2n2 in n2 2 ð0; 1Þ
w ¼ 1� ðDhÞ1 � ðDhÞ2 � ðDhÞ3n3 in n3 2 ð0; 1Þ

9=
; ð3Þ

where, ðDhÞi ¼ ð1=jiÞ=ð1=j1 þ 1=k2 þ 1=k3Þ ði ¼ 1; 2; 3Þ.
Function /ðni; sÞ is the unsteady solution that satisfies

Eqs. (1a), /jn1¼0 ¼ 0, /jn3¼1 ¼ 0, Eqs. (1c)–(1f). The

initial condition at s ¼ 0 requires

/ðni; 0Þ ¼ wðniÞ i ¼ 1; 2; 3 ð4Þ

We obtain the full series solution for the unsteady

part by performing separation of variables as (the

superscripts of the Xn are not powers):

/ ¼
X1
n¼0

Ane
�k2nd1sX 1

n ðn1Þ in n1 2 ð0; 1Þ; ð5Þ

/ ¼ D1

X1
n¼0

Ane
�k2nd1sX 2

n ðn1Þ in n2 2 ð0; 1Þ; ð6Þ

/ ¼ D2

X1
n¼0

Ane
�k2nd1sX 3

n ðn3Þ in n3 2 ð0; 1Þ: ð7Þ

The eigenvalues kn satisfy the functional relationship

(see [4] for similar results)
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of the eigenvalues.

Table 1

The first 20 eigenvalues, their differences and the ratios of

successive differences

m km km � km�1
kmþ1�km
km�km�1

1 1.5432e+00 – –

2 1.6799e+00 1.3670e)01 2.0678e+01

3 4.5066e+00 2.8267e+00 7.7087e)02
4 4.7245e+00 2.1790e)01 4.0319e+00

5 5.6031e+00 8.7855e)01 2.5087e+00

6 7.8070e+00 2.2040e+00 5.1384e)02
7 7.9203e+00 1.1325e)01 2.2846e+01

8 1.0508e+01 2.5872e+00 1.8792e)01
9 1.0994e+01 4.8619e)01 7.8923e)01
10 1.1377e+01 3.8372e)01 6.9958e+00

11 1.4062e+01 2.6844e+00 4.3387e)02
12 1.4178e+01 1.1647e)01 1.7475e+01

13 1.6214e+01 2.0352e+00 5.1553e)01
14 1.7263e+01 1.0492e+00 1.7723e)01
15 1.7449e+01 1.8595e)01 1.5299e+01

16 2.0293e+01 2.8448e+00 5.2749e)02
17 2.0444e+01 1.5006e)01 9.0633e+00

18 2.1804e+01 1.3600e+00 1.2692e+00
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tanðknÞ ¼ �ðD1 tanðl1nÞ þ D2 tanðl2nÞÞ=ð1� D2=D1

� tanðl1nÞ tanðl2nÞÞ: ð8Þ

The eigenfunctions are given by (see also [4]):

X 1
n ðn1Þ ¼ sinðknn1Þ; ð9Þ

X 2
n ðn2Þ ¼ an sinðl1nn2Þ þ bn cosðl1nn2Þ; ð10Þ

X 3
n ðn3Þ ¼ an sinðl2nn3Þ þ bn cosðl2nn3Þ: ð11Þ

where the parameters can be calculated from:

l1n ¼
ffiffiffiffiffiffiffiffiffiffiffi
d1=d2

p
kn, l2n ¼

ffiffiffiffiffiffiffiffiffiffiffi
d1=d3

p
kn,

D1 ¼ j1=j2

ffiffiffiffiffiffiffiffiffiffiffi
d2=d1

p
; D2 ¼ j1=j3

ffiffiffiffiffiffiffiffiffiffiffi
d3=d1

p
;

an ¼ cosðknÞ; bn ¼ sinðknÞ=D1;

an ¼ cosðknÞ cosðl1nÞ � sinðknÞ sinðl1nÞ=D1; and

bn ¼ cosðknÞ sinðl1nÞD1=D2 þ sinðknÞ cosðl1nÞ=D2:

The global or �natural’ [4] orthogonality condition is

g1

Z 1

0

X 1
n X

1
m dn1 þ D1

Z 1

0

X 2
n X

2
m dn2 þ g2D2

Z 1

0

X 3
n X

3
m dn3

¼
0; n 6¼ m

Nm; n ¼ m

�
: ð12Þ

By a detailed derivation, we must have g1 ¼
ffiffiffiffiffiffiffiffiffiffiffi
d2=d1

p
and

g2 ¼
ffiffiffiffiffiffiffiffiffiffiffi
d2=d3

p
, so that when n 6¼ m,

g1

Z 1

0

X 1
n X

1
m dn1 þ D1

Z 1

0

X 2
n X

2
m dn2 þ g2D2

Z 1

0

X 3
n X

3
m dn3

¼ 0:

The orthogonality conditions can then be written in the

following simple, symmetric form:

j2j3

Z 1

0

X 1
n X

1
mdn1 þj1j3

Z 1

0

X 2
n X

2
mdn2 þj1j2

Z 1

0

X 3
n X

3
mdn3

¼
0; n 6¼m

Mm; n¼m

�
: ð13Þ

Here Mm ¼ j2j3=2þ j1j3ðcos2ðkmÞ þ sin2ðkmÞ=ðD2
1ÞÞ=2þ

j1k2ða2m þ b
2

mÞ=2 and Am ¼ j2j3=ðkmMmÞ. The expres-

sions for Am and Mm are used in Eqs. (5)–(7).
19 2.3530e+01 1.7262e+00 7.3562e)02
20 2.3657e+01 1.2698e)01 2.1993e+01
4. Numerical verification and comparison

We choose the following values for the problem

parameters: d1 ¼ 1:0, j1 ¼ 1:0 W/(m2 K), d2 ¼ 3:0,
j2 ¼ 0:1 W/(m2 K), d3 ¼ 1:0, j3 ¼ 1:0 W/(m2 K), i.e.

j1=j2 ¼ 10 and j2=j3 ¼ 0:1.
The Newton iteration procedure outlined in the

Appendix gives the eigenvalues of the problem, i.e. the

roots of Eq. (8). The pattern of their variation is shown

in Fig. 2. The first 20 eigenvalues are also given in

Table 1.
We implemented both the eigenfunction expansion

and finite difference methods for this numerical example.

We analyzed the error between the expansion solution

(he) and finite difference solution (hfd) in the normalized

L2 norm, khe � hfdkL2=khekL2 . We found that they are

identical to within 0.15% at s ¼ 0:1, 0.42% at s ¼ 0:5,
0.21% at s ¼ 1:0, 0.035% at s ¼ 2:0, and essentially

equal at s ¼ 100. Fig. 3a shows the eigenfunction
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Fig. 3. (a) Solutions using the eigenfunction expansion and fi-

nite difference methods are graphically indistinguishable. The

interfaces are located at n ¼ 1, n ¼ 2. The three-layer medium

is confined to 06 n6 3. (b) Relative errors jhe � hfdj=jhej at

each point n at the specified time s. Note the decrease as s in-

creases.
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solutions and the finite difference numerical solutions.

Fig. 3b gives the relative errors versus the dimensionless

coordinates. We see that the solutions agree well with

each other.

We also examined the number of terms required for

an accurate description when the eigenfunction expan-

sion method is implemented. Only a few terms (no more

than three) are needed for the ‘‘large’’ time s ¼ 1:0, but
more terms (approximately 15) must be included to

achieve the same accuracy for s ¼ 0:01. Producing

accurate solutions with few terms is important if the

expression is actually to be used in heat transfer calcu-

lations [9].
5. Conjectured solution for an n-layer slab

Consider a composite slab consisting of n parallel

layers as shown in Fig. 4. The non-dimensional tem-

perature h satisfies Eq. (1a) in the ith region. The

boundary conditions and the initial conditions are the

same as the case of 2-layer (or 3-layer) slab. We assume

also that the interfaces satisfy conditions of perfect

thermal contact.

Based on the results for the 2-layer and 3-layer cases,

we write the following conjectured solution for the

n-layer problem:

h ¼ 1� ðDhÞ1n1 � / in n1 2 ð0; 1Þ
h ¼ 1� ðDhÞ1 � ðDhÞ2n2 � / in n2 2 ð0; 1Þ

..

.

h ¼ 1� ðDhÞ1 � � � � � ðDhÞnnn � / in nn 2 ð0; 1Þ

9>>>>>=
>>>>>;
ð14Þ

/ ¼
X1
l¼0

Ale
�k2l d1sX 1

l ðn1Þ in n1 2 ð0; 1Þ;

/ ¼ D1

X1
l¼0

Ale
�k2l d1sX 2

l ðn2Þ in n2 2 ð0; 1Þ;

/ ¼ D2

X1
l¼0

Ale
�k2l d1sX 3

l ðn3Þ in n3 2 ð0; 1Þ;

..

.

/ ¼ Dn�1

X1
l¼0

Ale
�k2l d1sXn

l ðnnÞ in nn 2 ð0; 1Þ;

ð15Þ

where the eigenvalues kl satisfy the function:
The global orthogonality condition is:

Y
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X 1
p X

1
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j 6¼2
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Z 1

0

X 2
p X

2
q dn2 þ � � �

þ
Y

jj

Z 1

Xn
p X

n
q dnn ¼

0; p 6¼ q
(

ð17Þ



Fig. 4. A composite slab with n distinct layers.

Y. Sun, I.S. Wichman / International Journal of Heat and Mass Transfer 47 (2004) 1555–1559 1559
The coefficients Al in Eq. (15) are given by:

Al ¼
Y
j 6¼l

jj=ðklMlÞ: ð18Þ
6. Conclusion

The eigenfunction expansion method is shown to

provide an easily calculated exact solution that requires

especially few terms for large times. The advantage of

this solution method may arise, for example, when one

of the slabs has thermophysical properties radically

different from those of the other two, or one layer (e.g.,

the sample) is much narrower than the other two layers.

In cases such as these a numerical solution undertaken

without a prior transformation of coordinates may be-

come inaccurate. The investigation of such special lim-

iting cases remains a subject for future research.
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Appendix A

We describe the procedure for finding eigenvalues by

the Newton iterative method mentioned in Section 4. We

assume that the analytic solution has the form given by

Eqs. (5)–(7). The eigenfunctions X j
nðnÞ, ðj ¼ 1; 2; 3Þ are

bounded. The eigenvalues kn satisfy F ðkÞ ¼ 0. When ds
is not small, e�k2ds decreases rapidly with an increase of

jkj, therefore we only need to consider k0s (jkj6K, for a
sufficiently large K > 0) to ensure the required accuracy.

By symmetry, we only need to find all k0s (k 2 ½0;K�) to
accomplish the implementation. The interval ½0;K� is

divided into N non-overlapping subintervals, i.e.

½0;K� ¼
SN

i¼1½ai; aiþ1� such that in ½ai; aiþ1� ði ¼ 1; 2; . . .NÞ
F ðkÞ is monotonous. Then we can apply the Newton

iterative method to find the corresponding kðk 2
½ai; aiþ1�) such that F ðkÞ ¼ 0, where ai may be taken as

the initial value of the iteration.
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